A Conditional Entropy Power Inequality for Dependent Variables

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The conditional Entropy Power Inequality for bosonic quantum systems

We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any co...

متن کامل

The conditional Entropy Power Inequality for quantum additive noise channels

We prove the quantum conditional Entropy Power Inequality for quantum additive noise channels. This inequality lower bounds the quantum conditional entropy of the output of an additive noise channel in terms of the quantum conditional entropies of the input state and the noise when they are conditionally independent given the memory. We also show that this conditional Entropy Power Inequality i...

متن کامل

Entropy-power inequality for weighted entropy

We analyse an analog of the entropy-power inequality for the weighted entropy. In particular, we discuss connections with weighted Lieb‘s splitting inequality and an Gaussian additive noise formula. Examples and counterexamples are given, for some classes of probability distributions.

متن کامل

Entropy Power Inequality for the Rényi Entropy

The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.

متن کامل

An entropy inequality for symmetric random variables

We establish a lower bound on the entropy of weighted sums of (possibly dependent) random variables (X1, X2, . . . , Xn) possessing a symmetric joint distribution. Our lower bound is in terms of the joint entropy of (X1, X2, . . . , Xn). We show that for n ≥ 3, the lower bound is tight if and only if Xi’s are i.i.d. Gaussian random variables. For n = 2 there are numerous other cases of equality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2004

ISSN: 0018-9448

DOI: 10.1109/tit.2004.831790